
131

Mobile applications:
client storage

and offline execution

HTML5 is finally providing the web with a solution to the problem of working

offline. Although a plethora of solutions for saving web pages for later use in an

offline environment already exist, until now there’s been no solution for using web

applications in such a manner. By allowing web applications to store data locally on

the client, HTML5 now enables web applications to work without a constant connec-

tion to a central server.

 When might this be useful? Think of a sales representative in the field being

able to use his firm’s customer relationship management application on the go,

even in areas with poor network coverage, such as a remote location or an under-

ground train. With the new capabilities provided by HTML5, that rep can still use

the application in such areas, viewing data that has already been downloaded to the

device, and even being able to enter new data, which is stored temporarily on

the device and synchronized back to the central server when the network is available

This chapter covers

■ Storing data on the client side with the Web

Storage API

■ Managing a full client-side IndexedDB database

■ Enabling applications to work offline with the

Application Cache API

132 CHAPTER 5 Mobile applications: client storage and offline execution

again. Also, think of an HTML5 game like the ones you will build in chapters 6 and 7.

Rather than storing game saves and state data on a server, you can increase perfor-

mance and reduce latency and load by saving the data locally. One feature in particu-

lar—the application cache manifest—gives you the ability to create a game that can be

run completely offline.

 In this chapter, we’re going to show you how to put these features and concepts

into practice by building a simple mobile web application called My Tasks. This appli-

cation, which will be fully functional when the user is offline, will create, update, and

delete tasks that are stored locally in the browser. In addition, My Tasks will allow the

user to change settings for the application’s display.

Let’s get started by taking a closer look at the sample application.

5.1 My Tasks: application overview, prerequisites,
and first steps

My Tasks is a simple task management application for mobile devices. All data will be

stored on the client side, and the application will be fully functional offline. In build-

ing it, you’ll take advantage of the following HTML5 features:

■ Storage—Allows the app to save small amounts of data to the user’s local storage.

My Tasks will use this feature to store user settings like name and preferred

color scheme.

■ Indexed database (aka IndexedDB)—Enables the application to create a database

of key/value records. My Tasks will use IndexedDB to store task data, allowing

users to easily view, add, update, and delete task items. The application will use

the now-defunct Web SQL to provide a fallback for devices that don’t yet sup-

port IndexedDB.

■ Application cache manifest—Enables the application to be used offline. The cache

manifest ensures that the user’s browser keeps a copy of needed files for offline

use. Upon reconnection to the web, the browser can look for updates and allow

the user to reload the application and apply the updates.

As you can see in figure 5.1, the application is split into three distinct views—Task List,

Add Task, and Settings.

Why build the sample My Tasks application?

While working through this chapter’s sample application, you’ll learn how to

■ Store data on the client side using the Web Storage API

■ Store data on the client side using the IndexedDB database

■ Use the application cache manifest file to build web applications that will func-

tion while offline

133My Tasks: application overview, prerequisites, and first steps

Task List displays a list of existing tasks, each with a check box to mark the task as

completed and a Delete button to remove it. Task List also features a search box,

which allows you to filter the task list by description. Add Task contains a form to

add a new task to the database. Settings contains a form to customize the application

and to reset all locally stored data (deleting all Storage data and IndexedDB/Web

SQL data). The navigation bar at the top of the screen lets you easily switch among

the three views.

 All three views are contained in a single HTML page, and you will use location

.hash to switch among them, ensuring the application is highly responsive and fast.

 We’ll walk you through seven major steps to build the application:

■ Step 1: Create the basic structure of the application: the HTML page with the

application’s three views and the JavaScript code to navigate among them.

■ Step 2: Implement the data management of the Settings view using the Web

Storage API.

■ Step 3: Connect to the database and create a storage area for tasks.

■ Step 4: Enable data entry and search of the Task List view using the IndexedDB API.

■ Step 5: Allow users to add, update, and delete tasks.

■ Step 6: Create a cache manifest file to allow the application to work offline.

■ Step 7: Implement automatic updating of the application.

Figure 5.1 The three main views of the My Tasks application: Task List, Add Task, and Settings. To

select a view, the application includes a navigation bar near the top.

134 CHAPTER 5 Mobile applications: client storage and offline execution

NOTE The application should be run from a web server rather than the local
filesystem. Otherwise, you won’t be able to use it on a mobile device and
offline support won’t work. Also note that the application has been tested on
iOS, Android, and BlackBerry Torch mobile devices, as well as on Opera
Mobile. It’s also fully functional in the Chrome, Firefox, Safari, and Opera
desktop browsers.

If you’re looking for a quick and easy way to set up a web server for this chapter’s

application, we suggest you try Python’s built-in server, http.server. You can get this

server module by downloading and installing the latest version of the Python pro-

gramming language from http://python.org/download/. Once you have it installed,

you can start the server by changing your current directory to the directory of your

web app and then invoking the web server with the following command:

python –m http.server

Python’s web server will start running on port 8000. If you don’t like the default 8000

port, you can specify another port by adding the desired port number at the end of

the python command:

python –m http.server 8080

In this section, you’ll define the application’s HTML structure, use CSS to define visi-

bility for each view, and write the JavaScript to implement navigation between the

views. For the development of the My Tasks basic structure, the process consists of

four steps:

■ Step 1: Define the top-level HTML structure.

■ Step 2: Write HTML code for the navigation bar.

■ Step 3: Create views with <section> elements.

■ Step 4a: Enable navigation between views by using CSS to define section visibil-

ity rules.

■ Step 4b: Enable navigation between views by using JavaScript to initiate

view changes.

Prerequisites

Before you create the application, you need to handle a few prerequisites:

■ Create a new directory on your web server. When the chapter tells you to create

or edit a file, save it to this directory.

■ You won’t be creating the CSS style sheet. Instead copy the CSS style sheet for

chapter 5 from the code package at the book’s website: www.manning.com/

crowther2; then save the style sheet to the directory mentioned in the first pre-

requisite.

Note that all files for this chapter and the book are available at the Manning website:

www.manning.com/crowther2.

http://www.manning.com/crowther2
http://www.manning.com/crowther2
www.manning.com/crowther2
http://python.org/download/

135My Tasks: application overview, prerequisites, and first steps

Enough chatter about what you’re going to build, let’s get building!

5.1.1 Defining the HTML document structure

In this section, the index.html file will define a very basic <head> and <body> frame-

work for the application. The index.html file will contain a title and font for the appli-

cation, as well as a <script> element to tell the application where the JavaScript file is

located. Near the end of index.html, a <body> element will be added to hold the

HTML markup coming in subsequent sections.

STEP 1: DEFINE THE TOP-LEVEL HTML STRUCTURE

Create a file named index.html and include the contents of the following listing.

This code defines the basic layout of the page and loads external CSS and Java-

Script files.

<!DOCTYPE html>
<html lang="en" class="blue">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0, maximum-scale=1.0, user-scalable=0">
 <title>My Tasks</title>
 <link rel="stylesheet"
 href="http://fonts.googleapis.com/css?family=Carter+One">
 <link rel="stylesheet" href="style.css">
 <script src="app.js"></script>
</head>
<body class="list">
</body>
</html>

STEP 2: WRITE HTML CODE FOR THE NAVIGATION BAR

This code comprises a <nav> element with three list items, one for each view in the

application: Task List, Add Task, and Settings. Add the navigation bar’s HTML code in

the next listing within the <body> of your HTML document.

<header>
 <h1>My Tasks</h1>
 <nav>

 Task List
 Add Task
 Settings

 </nav>
</header>

Listing 5.1 index.html—Application HTML structure

Listing 5.2 index.html—Adding a navigation bar

A class attribute on the root element defines the color
scheme. Later in the chapter, the application will use this
attribute to allow the user to change the color scheme.

Load a
custom font
using the
Google Font
API.

A class attribute on the <body> element will direct the browser, via
a CSS rule, to display one of three views: Task List, Add Task, or
Settings. The class attribute also directs the browser, via another CSS
rule, to highlight the corresponding button on the navigation bar.

In the Settings view, the user has the option to replace the “My”
with any other string of characters. The markup surrounding

“My” will make finding and changing the title easy.

Create a list
with three
links, each

pointing
to a hash
reference

for the view
in question.

136 CHAPTER 5 Mobile applications: client storage and offline execution

STEP 3: CREATE VIEWS WITH <SECTION> ELEMENTS

The final part of the HTML page uses <section> elements to define the application’s

three views. The first view, Task List, contains a search form and a results list, which

will be generated by a JavaScript function. The next view, Add Task, contains a form

that allows the user to create a new task and due date. The last view, Settings, contains

a form to set the name and color scheme preference for the application. A class attri-

bute bound to each <section> element will allow the forthcoming CSS and JavaScript

code to control the view’s visibility. Insert the code in the following listing directly

after the code from listing 5.2.

<section class="list">
 <form name="search">
 <input type="search" name="query" placeholder="Search tasks...">
 </form>
 <ul id="task_list">
</section>
<section class="add">
 <form name="add">
 <label>
 Task Description
 <textarea name="desc"></textarea>
 </label>
 <label>
 Due Date (MM/DD/YYYY)
 <input type="date" name="due_date">
 </label>
 <input type="submit" value="Add Task">
 </form>
</section>
<section class="settings">
 <form name="settings">
 <label>
 Your Name
 <input type="text" name="name">
 </label>
 <label>
 Color Scheme
 <select name="color_scheme">
 <option>Blue</option>
 <option>Red</option>
 <option>Green</option>
 </select>
 </label>
 <input type="submit" value="Save Settings">
 <input type="reset" value="Reset All Data">
 </form>
</section>

Listing 5.3 index.html—Main application views

This form allows the user to search
the Task List by task description.

Place the results of the search
in an empty unordered list
with the ID “task_list.”

Put a form in the Add Task section
that allows users to add a new
task to the list. The form contains
a task description <textarea>
and a due date <input>.

In the Settings section, create a
settings form that allows users to
set their name and choose a color
scheme for the application (red,
blue, or green).

Use an <input> element
to implement a button
that resets user settings
and removes all tasks.

137My Tasks: application overview, prerequisites, and first steps

5.1.2 Controlling visibility of views using CSS

Now that you have the three views implemented in one HTML file, you need the ability

to switch among the different views. You will do this by turning off the visibility of the

previous view and turning on the visibility of the next view. (You won’t need to make

these changes to the CSS file, because you should have already copied the Manning-

supplied CSS file to your server’s directory. See “Prerequisites.”)

STEP 4A: ENABLE NAVIGATION BETWEEN VIEWS BY USING CSS TO DEFINE <SECTION> VISIBILITY RULES

In order to have only one view visible at a time, the application’s CSS file defines rules

to control the visibility of each view’s <section> element:

section {
 display: none;
}

The first rule declares that a section element should be invisible wherever a section

element is defined.

 In order to make a specific view visible, the application defines some counteracting

rules:

body.list section.list,
body.add section.add,
body.settings section.settings {
 display: block;
}

These rules declare that a <section> element should be visible when a <body> ele-

ment and its embedded <section> element have a class attribute in common (either

list, add, or settings). In this situation, the <section> element would also match

the first rule, but the more specific rule will override the first rule.

 To see how this works, consider what happens when the user wants to switch views.

When the user taps the Add Task button on the navigation bar, the application

changes the <body>’s class attribute to add. Because the <body>’s class attribute now

matches the <section> with a class attribute of add, the section.add element

becomes visible, and all other <section>s are rendered invisible.

 The CSS rules only get you part of the way toward implementing the navigation of

the views. Although the CSS rules declare the conditions for switching views, the rules

can’t initiate the view switching. As mentioned earlier, a user’s tap of a button on the

navigation bar initiates the view switch by changing the class attribute of the <body>

element. The next section describes how to implement this attribute change and link

it to the view buttons.

5.1.3 Implementing navigation with JavaScript

In this section, you’ll use JavaScript to modify the class attribute of the <body> ele-

ment. Each time the class value is changed to a different value, one or more CSS

rules will be activated to change the application’s view. The user will initiate these

changes by tapping one of three buttons: Add Task, Settings, or Task List. Each button

138 CHAPTER 5 Mobile applications: client storage and offline execution

is implemented as a link with an anchor name of #add, #settings, or #list. So when

a link is selected, it will change the location.hash property to one of the three

anchor names. The browser will detect the change in location.hash and then invoke

an event handler defined by the application. The event handler will respond by using

the value of the location.hash property to set the value of the <body> element’s

class attribute. If the attribute value is different from the previous one, the applica-

tion will switch to the new view.

STEP 4B: ENABLE NAVIGATION BETWEEN VIEWS USING JAVASCRIPT TO INITIATE VIEW CHANGES

Let’s start off by defining methods to switch between views in the application. The

code in the next listing creates a new object constructor, Tasks, containing two func-

tions, nudge and jump. When the page has loaded, a new Tasks object is created,

which forms the basis for your application. Take the code in the following listing and

insert it into a new file, app.js. Store this file in the same directory as index.html.

(function() {
 var Tasks = function() {
 var nudge = function() {
 setTimeout(function(){ window.scrollTo(0,0); }, 1000);
 }
 var jump = function() {
 switch(location.hash) {
 case '#add':
 document.body.className = 'add';
 break;
 case '#settings':
 document.body.className = 'settings';
 break;
 default:
 document.body.className = 'list';
 }
 nudge();
 }
 jump();
 window.addEventListener('hashchange', jump, false);
 window.addEventListener('orientationchange', nudge, false);
 }

 window.addEventListener('load', function() {
 new Tasks();
 }, false);
})();

TRY IT OUT

If you run the application in any HTML5-compatible web browser, you should be able

to navigate between the different views of the application and see the current view

highlighted in the navigation bar. This is illustrated in figure 5.2.

 If you are trying to run this app on your desktop browser with the Python web

server, start the My Tasks app by entering localhost:8000 into your browser’s address

Listing 5.4 app.js—Foundation JavaScript code for the application

The nudge function hides the browser toolbar on
iOS devices to gain extra space for the application.

The jump function takes
the value of location.hash
and uses it to define the
current view. Notice how
the Tasks constructor calls
jump after its definition.
Because the user may have
bookmarked a view other
than the application’s
home view of Task List, the
Tasks constructor uses
jump to check the value
of location.hash for a
non-default view.

When a user
wants to change

the view, they
click a button on

the navigation
bar. This action

changes the value
of location.hash

and raises a
hashchange

event. You want
to call jump when

a hashchange is
detected.

On mobile devices, when
the screen orientation

changes, call the nudge
function to hide the

browser toolbar, if possible.
After the page loads, create a new instance
of the Tasks object to start the application.

139Managing data with the Web Storage API

box. (If you configured the web server with a different port number, use that number

instead of 8000.)

 With the basics out of the way, let’s move on to implementing the Settings view

using the Web Storage API in HTML5.

5.2 Managing data with the Web Storage API

Among other features, the Settings view allows users to choose a name and color

scheme for the application. Traditionally, web applications would have implemented

this either by storing the user’s settings in a remote database on the server side or by

storing the preferences in a cookie, which often gets deleted when the user clears

their browsing history.

Fortunately, we have better options with HTML5: the Web Storage specification. It

defines two window attributes for storing data locally on the client: localStorage and

sessionStorage. The localStorage attribute allows you to store data that will persist

on the client machine between sessions. The data can be overwritten or erased only by

the application itself or by the user performing a manual clear down of the local stor-

age area. The API of the sessionStorage attribute is identical to that of the local-

Storage attribute, but sessionStorage won’t persist data between browser sessions, so

if the user closes the browser, the data is immediately erased.

TIP You can try sessionStorage in this section by replacing any reference to
localStorage with sessionStorage in the listing to come.

To implement the management of the application’s settings using the Web Storage API

and to integrate the setting functions with the UI, you’ll need to follow these four steps:

Web Storage API 4.0 3.5 8.0 10.5 4.0

In this section, you’ll learn

■ How to read data from localStorage
■ How to write data to localStorage
■ How to delete some or all data from localStorage

Figure 5.2 The application highlights the

current view by displaying a navigation button

with a darker background and blue text.

140 CHAPTER 5 Mobile applications: client storage and offline execution

■ Step 1: Read application settings from localStorage.

■ Step 2: Save application settings to localStorage.

■ Step 3: Clear all settings and data from localStorage.

■ Step 4: Connect the UI to localStorage functions.

NOTE You need to complete all the steps before you can run and test the
code in this section.

5.2.1 Reading data from localStorage

When the application starts, it will need to read the user’s name and chosen color

scheme from some client-based data store, then apply them to the UI. You’ll use

localStorage as a repository for this information and store each piece of data as a

key/value pair. Retrieving items from localStorage is done by calling its Storage API

method getItem with the value’s key.

STEP 1: READING APPLICATION SETTINGS FROM LOCALSTORAGE

For the purpose of retrieving application settings from localStorage, the application

will need a loadSettings function. This function reads the user’s name and color

scheme from localStorage using the Web Storage API method getItem and then

adjusts the navigation bar’s header to include the user’s name, and changes the docu-

ment element’s class attribute to assign the selected color scheme.

 Open the app.js file you created earlier in the chapter, and add the code from the

next listing to the Tasks constructor function (just below the line where you attach a

handler to the orientationchange event).

var localStorageAvailable = ('localStorage' in window);

var loadSettings = function() {
 if(localStorageAvailable) {
 var name = localStorage.getItem('name'),
 colorScheme = localStorage.getItem('colorScheme'),
 nameDisplay = document.getElementById('user_name'),
 nameField = document.forms.settings.name,
 doc = document.documentElement,
 colorSchemeField = document.forms.settings.color_scheme;
 if(name) {
 nameDisplay.innerHTML = name+"'s";
 nameField.value = name;
 } else {
 nameDisplay.innerHTML = 'My';
 nameField.value = '';
 }
 if(colorScheme) {
 doc.className = colorScheme.toLowerCase();
 colorSchemeField.value = colorScheme;
 } else {
 doc.className = 'blue';
 colorSchemeField.value = 'Blue';

Listing 5.5 app.js—Reading data from localStorage

Core API

Before you start to access
localStorage, query the window

object for a localStorage
attribute. The variable

localStorageAvailable will be
true if the browser supports the

localStorage attribute.

Use the
Storage API

method
getItem to

retrieve
data from

localStorage.
If the data

does not exist,
getItem will

return a null
value instead.

141Managing data with the Web Storage API

 }
 }
}

At this point you’re probably wondering how your application is going to read data

from localStorage when you haven’t actually saved anything in the first place. Fear

not! You’re going to solve that problem next by creating a function that will save the

user’s selected settings to localStorage.

5.2.2 Saving data to localStorage

Saving the user’s settings is relatively easy. Save data in localStorage by using its Web

Storage API method setItem, passing two arguments: a key and value.

STEP 2: SAVE NAME AND COLOR SCHEME TO LOCALSTORAGE

In order to save the user’s name and chosen color scheme, you’ll implement a new

function, saveSettings. It will store the user’s preferences and change the location

.hash to #list, the Task List view. Add the code from the next listing directly after the

loadSettings function from the previous listing.

var saveSettings = function(e) {
 e.preventDefault();
 if(localStorageAvailable) {
 var name = document.forms.settings.name.value;
 if(name.length > 0) {
 var colorScheme = document.forms.settings.color_scheme.value;

 localStorage.setItem('name', name);
 localStorage.setItem('colorScheme', colorScheme);
 loadSettings();
 alert('Settings saved successfully', 'Settings saved');
 location.hash = '#list';
 } else {
 alert('Please enter your name', 'Settings error');
 }
 } else {
 alert('Browser does not support localStorage', 'Settings error');
 }
}

You’ve now seen how to read and write data using the Web Storage API. Next, we’ll

show you how to remove data.

5.2.3 Deleting data from localStorage

In the Settings view of My Tasks, the user has an option to remove all items and set-

tings from the application. So, you’ll need to consider the two data-removal methods

in the Storage API. The first, removeItem, is useful when you need to delete a single

item from localStorage. The method requires one argument, the key to identify and

remove the value from localStorage. Because the application needs to reset all settings

Listing 5.6 app.js—Saving data to localStorage

Core API

Use the setItem method to store
data in localStorage. If an item with

this name already exists,
it will be overwritten

without warning.

When the
data has been

stored, call
loadSettings

to update the
application

with the new
settings.

Setting location.hash
to #list will trigger a
redirect to the Task
List view.

Core API

142 CHAPTER 5 Mobile applications: client storage and offline execution

and data in the application, you won’t use removeItem. Instead, you’ll want the second

method, clear, which removes all items from localStorage.

STEP 3: CLEAR ALL SETTINGS AND DATA FROM LOCALSTORAGE

You’ll need a function, resetSettings, to erase all the settings data in the applica-

tion. Before resetSettings erases the data, you should ask the user to confirm this

action. After erasing the data, load the default user settings into the application and

change the location.hash to #list, the Task List view.

 Add the following code immediately after the code from the previous listing.

var resetSettings = function(e) {
 e.preventDefault();
 if(confirm('This will erase all data. Are you sure?', 'Reset data')) {
 if(localStorageAvailable) {
 localStorage.clear();
 }
 loadSettings();
 alert('Application data has been reset', 'Reset successful');
 location.hash = '#list';
 }
}

At this point, all of the functions for interacting with localStorage have been cre-

ated, and all that’s left is to connect the UI to these functions.

STEP 4: CONNECT THE UI TO THE LOCALSTORAGE FUNCTIONS

The final piece of the puzzle for our sample application is to add event handlers to the

Settings view so that data is saved and reset when the buttons are pressed. Aside from con-

necting the storage methods to the buttons, you’ll need to call loadSettings so that data

is read from localStorage each time the application page loads. The code you need to

add (again, add it below the code from the previous listing) is in the following listing.

loadSettings();
document.forms.settings.addEventListener('submit', saveSettings, false);
document.forms.settings.addEventListener('reset', resetSettings, false);

TRY IT OUT!

If you now launch the application in a compatible browser, you should be able to nav-

igate to the Settings view and change the name and color scheme from the default set-

tings. Figure 5.3 shows this happening on a BlackBerry Torch 9860 smartphone.

 If you were to press the Reset All Data button, the application would return to its

default color and name.

 Because you’re using localStorage, these name and color settings will persist

between browser sessions (unless the user specifically clears down their localStorage

Listing 5.7 app.js—Clearing data from localStorage

Listing 5.8 app.js—Connecting the UI to the localStorage functions

Before clear down of localStorage, the
application will prompt the user to
confirm deletion of user settings.

When the
data has been
removed, call
loadSettings

to restore
application

defaults. Change location.hash to trigger
a redirect to the Task List view.

Attach event handlers to the submit and
reset events of the Settings form.

143Managing data using IndexedDB

area via the browser preferences screen). Try refreshing the page, restarting your

browser, and even restarting your computer; the data should persist. Pretty neat.

 In the next section, we’ll show you how to take things even further with client-

side data storage using the IndexedDB API. We’ll do so by having you add real meat

to your sample application by implementing the ability to add, edit, delete, view,

and search tasks.

5.3 Managing data using IndexedDB

IndexedDB provides an API for a transactional database that is stored on the client

side. The Web Storage API stores and retrieves values using keys; IndexedDB supports

more advanced functionality, including in-order retrieval of keys, support for dupli-

cate values, and efficient value searching using indexes.

In the cases where the application detects no browser support for IndexedDB, you’ll

use Web SQL as a fallback.

IndexedDB 11.0 4.0 10.0 N/A N/A

Navigate to the

Settings page

Enter your name

and color scheme.

Press Save

Settings.

Receive a success message.

Dismiss the message

by pressing OK.
You will be returned

to the Task List view

(which is empty in

this case).

Figure 5.3 The user fills out the Settings form and presses the Save Settings button.

When the data has been saved to localStorage, the settings are reloaded, and a

message is displayed to the user. When the user dismisses this message, they are taken

back to the Task List view (which is empty for now).

144 CHAPTER 5 Mobile applications: client storage and offline execution

Using the IndexedDB API can be notoriously complex at first glance, particularly if

you don’t have experience writing asynchronous JavaScript code that uses callback

functions. But this section will slowly guide you in the use of IndexedDB as you add

task management features to My Tasks.

As you learn how to use the database services of IndexedDB and Web SQL, you’ll also

implement the UI for the Add Task and Task List views. Overall, building out the UI

and application features happens in eight steps:

■ Step 1: Detect IndexedDB or Web SQL.

■ Step 2: Connect to the database and create an object store.

■ Step 3: Develop the UI for the Task List view.

■ Step 4: Implement a search engine for the database and display search results.

■ Step 5: Implement the search interface for the Task List view.

■ Step 6: Add new tasks from the Add Task view to the database.

■ Step 7: Update and delete tasks from the Task List view.

■ Step 8: Drop the database to clear all tasks.

5.3.1 Detecting database support on a browser

Before you can create a database, you need to detect what database system is running

within a browser. Currently two systems can be found: IndexedDB and Web SQL.

Detection of the database system is done by assigning a variable to a logical expression

of alternating or operators (||) and vendor-prefixed IndexDB object identifiers.

Because IndexedDB isn’t a standard feature, you must use the vendor prefixes to

access the database system object on the various browsers.

FYI: More about Web SQL

IndexedDB was added to HTML5 quite late in the specification process. As a result,

browser support for it has been much slower than with other parts of the specifica-

tion. Prior to IndexedDB, HTML5 included a client-side database specification known

as Web SQL, which defined an API for a full relational database that would live in the

browser. Although Web SQL is no longer part of HTML5, many browser vendors had

already provided decent support for it, particularly mobile browsers.

In this section, you’ll learn

■ How to create and connect to an IndexedDB database

■ How to load existing data from an IndexedDB database

■ How to perform queries on an IndexedDB database using IndexedDB’s key ranges

■ How to store new data in an IndexedDB database

■ How to delete single data items from an IndexedDB database

■ How to clear an entire data store from an IndexedDB database

145Managing data using IndexedDB

 If a database object is found, the application saves the found database object to a

variable for later use; otherwise, the application assigns a false value to the variable.

You also need to find and save the database key range. We’ll discuss the key range later

in the section.

STEP 1: DETECT INDEXEDDB OR WEB SQL

Now, to add feature detection to the sample application, add the code from the fol-

lowing listing to the app.js file. This code should be added immediately after the code

you inserted in the previous section.

var indexedDB = window.indexedDB || window.webkitIndexedDB
 || window.mozIndexedDB || window.msIndexedDB || false,

IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange
 || window.mozIDBKeyRange || window.msIDBKeyRange || false,

 webSQLSupport = ('openDatabase' in window);

5.3.2 Creating or connecting to an IndexedDB database,

creating an object store and index

To create or connect to an IndexedDB database, the application needs to invoke the

IndexedDB method open. If no database exists when the open method is called, a new

database will be created, and a connection object will be created. Once indexedDB.open

successfully creates a connection, the onsuccess and/or upgradeNeeded event han-

dler will be called, and the connection object will be accessible through the event

object passed to the event handler.1 With this connection object, the application can

create an object store or index for the application.

 Before looking at how an application would create object stores and indexes, let’s

discuss how data is stored in an IndexedDB database. All data in an IndexedDB data-

base is stored inside an object store. Each database can contain many object stores,

which can be roughly thought of as equivalent to tables in a relational database man-

agement system (RDBMS). In turn, each object store comprises a collection of zero or

more objects, the equivalent of rows in a RDBMS. Figure 5.4 illustrates the structure of

an IndexedDB database.

 Now that you have a better idea of how objects are stored in the IndexedDB data-

base, let’s get back to creating object stores and indexes.

 Object stores can only be created while the application is handling an upgrad-

Needed event. This event can occur in two situations: when a new database is cre-

ated and when a database’s version number is increased. Once the application has

entered the upgradeNeeded event handler, the object store is created by calling the

Listing 5.9 app.js—Feature detection for database-related objects

1 If a new database is created, events upgradeNeeded and onsuccess will be fired, but upgradeNeeded will
be handled before onsuccess.

Web SQL object is not
implemented as a
member of window. To
detect if the browser
supports Web SQL,
check for the existence
of openDatabase as a
member of window.

Core API

Core API

146 CHAPTER 5 Mobile applications: client storage and offline execution

createObjectStore method with two arguments: a name and keypath for the new

object store. The keypath defines what property within each object will serve as the

key for retrieving the object from its store.

 Once the object store is created, you can create one or more indexes for it. Creat-

ing an index allows the application to retrieve an object with a key different than the

one defined in the object store. To create a new index, use the object store’s method

createIndex and pass it three arguments: the name of the new index, the name of the

object property that will serve as the key, and an options object.

 The options object has two properties that serve as flag parameters. The first flag,

unique, allows the application to specify whether or not a key can be shared. The sec-

ond flag, multiEntry, allows the application to specify how to handle array-based keys:

Either enter an object under several different keys listed in an array, or enter an object

using the entire array as a key. You won’t need to use the second flag in the My Tasks

application (for more detail about multiEntry, see appendix B or www.w3.org/TR/

IndexedDB/#dfn-multientry).

 Let’s look at the database-creation process and apply it to our application.

STEP 2: CONNECT TO THE DATABASE AND CREATE AN OBJECT STORE

You will need to create an object store, “tasks”, for all the tasks the user will want to

keep track of. Remember to first create the database connection, because you’ll need

this to create the object store and the index. You’ll use the index to access the object

store by the task’s description. This will be useful when you implement the applica-

tion’s search engine that allows the user to filter their task list by a task’s description.

 You’ll also add a call to the loadTasks function here. It’s not related to object store

or index creation, but it will be useful later when the application is in the startup

phase and needs to load the existing task objects into the Task List view. You’ll imple-

ment loadTasks later in this section.

 The following listing might seem like a lot of code, but it’s doing quite a bit for us:

opening a database connection, creating an object store, and providing a Web SQL

fallback for browsers that don’t support IndexedDB. Add the code from this listing to

app.js, just below the code you added from listing 5.9.

Database

Object store

Object

Object store

Object Object Object Object Object

Figure 5.4 Hierarchical structure of an IndexedDB database. Each database can have

many object stores, which themselves can contain many objects. The object is the

structure for a data record, equivalent to a row in a relational database.

Core API

www.w3.org/TR/IndexedDB/#dfn-multientry
www.w3.org/TR/IndexedDB/#dfn-multientry

147Managing data using IndexedDB

var db;

var openDB = function() {
 if(indexedDB) {
 var request = indexedDB.open('tasks', 1),
 upgradeNeeded = ('onupgradeneeded' in request);
 request.onsuccess = function(e) {
 db = e.target.result;
 if(!upgradeNeeded && db.version != '1') {
 var setVersionRequest = db.setVersion('1');
 setVersionRequest.onsuccess = function(e) {
 var objectStore = db.createObjectStore('tasks', {
 keyPath: 'id'
 });
 objectStore.createIndex('desc', 'descUpper', {
 unique: false
 });
 loadTasks();
 }
 } else {
 loadTasks();
 }
 }
 if(upgradeNeeded) {
 request.onupgradeneeded = function(e) {
 db = e.target.result;
 var objectStore = db.createObjectStore('tasks', {
 keyPath: 'id'
 });
 objectStore.createIndex('desc', 'descUpper', {
 unique: false
 });
 }
 }
 } else if(webSQLSupport) {
 db = openDatabase('tasks','1.0','Tasks database',(5*1024*1024));
 db.transaction(function(tx) {
 var sql = 'CREATE TABLE IF NOT EXISTS tasks ('+
 'id INTEGER PRIMARY KEY ASC,'+
 'desc TEXT,'+
 'due DATETIME,'+
 'complete BOOLEAN'+
 ')';
 tx.executeSql(sql, [], loadTasks);
 });
 }
}

openDB();

Now that you can open a connection to the database and create an object store, let’s

look at how users will interact with the tasks database by developing the UI for the

Listing 5.10 app.js—Connecting to and configuring the database

Use db to store the
database connection.

The open method is asynchronous; while
the request is in progress, open
immediately returns an IDBRequest. If
no database exists, create one, and then
create a connection to the database.If upgradeNeeded is

a member of the
request object, then

the browser supports
upgradeNeeded event.

If the event
upgradeNeeded doesn’t
exist, then the browser
supports the deprecated
setVersion method.If db.version is

not equal to 1,
then no object

store exists
and it must be
created. Object
stores can only

be created
during a

version-change
transaction.
So, increase
the version

number of the
current

database by
calling

db.setVersion
with a version
argument set

to '1'.

Use createIndex to create another index for the
objectStore. This index will be used later to
implement the application’s search feature.

This event handler will be
called when the database is
created for the first time.

Allocate 5 MB
(5 * 1024 * 1024) for
the tasks database.

Use the executeSql method of the transaction object, tx, to create a
tasks table if it doesn’t already exist. A [] means no optional

argument array being passed. loadTasks is the callback function.

148 CHAPTER 5 Mobile applications: client storage and offline execution

Task List view. Building this interface will generate a list of user features to guide your

later development of database management functions.

5.3.3 Developing a dynamic list with HTML and JavaScript

Your Task List view will require a list of to-do items that can change as the user adds

and deletes tasks. Building a web page with a varying list requires the use of JavaScript

to generate new HTML markup for each list item and its UI controls. In addition,

you’ll need to insert those new list items by making modifications to the DOM. If a

user needs to delete an item, the application will regenerate the entire list rather than

try to remove an individual list item from the DOM. Although this isn’t the most effi-

cient way to handle list management, it’s fast to implement and allows you to get on to

more interesting tasks like learning about the HTML5 IndexedDB API!

STEP 3: DEVELOP THE UI FOR THE TASK LIST VIEW

The Task List view is a dynamic part of the application’s webpage that updates itself in

response to user actions. Here’s a list of those actions and how to implement them:

■ Adding a task to the list—The application needs to define a function, showTask,

to generate the HTML markup for each added task and then insert the markup

into the view’s DOM.

■ Checking off and deleting tasks—You’ll also use showTask to add check boxes and

Delete buttons to each added task. showTask will also define and bind an event

handler for each check box and delete button.

Figure 5.5 illustrates how the buttons and check boxes will appear.

 The code in listing 5.11 implements the showTask and createEmptyItem func-

tions. CreateEmptyItem is a helper function to handle the boundary conditions where

the user has no task items to display in the to-do list. This can occur in two situations:

Tapping Delete to the

right of a task removes

the task from the app.

The user can check the

box to the left of a task

to mark it as complete.

Figure 5.5 Each task item has two components that allow the user to update the

task list. Checking the box on the left-hand side will mark the task as complete,

whereas pressing the red Delete button on the right-hand side will remove the task.

149Managing data using IndexedDB

when no task items exist in the database and when a search of the task list yields no

matches. In order to handle these cases, createEmptyItem will create an “empty

item,” actually a message that says either “No tasks to display. Add one?” or “No tasks

match your query.”

 Add the following code to your application, just after the code from the previ-

ous listing.

 var createEmptyItem = function(query, taskList) {
 var emptyItem = document.createElement('li');
 if(query.length > 0) {
 emptyItem.innerHTML = '<div class="item_title">'+
 'No tasks match your query '+query+'.'+
 '</div>';
 } else {
 emptyItem.innerHTML = '<div class="item_title">'+
 'No tasks to display. Add one?'+
 '</div>';
 }
 taskList.appendChild(emptyItem);
 }

 var showTask = function(task, list) {
 var newItem = document.createElement('li'),
 checked = (task.complete == 1) ? ' checked="checked"' : '';

 newItem.innerHTML =
 '<div class="item_complete">'+
 '<input type="checkbox" name="item_complete" '+
 'id="chk_'+task.id+'"'+checked+'>'+
 '</div>'+
 '<div class="item_delete">'+
 'Delete'+
 '</div>'+
 '<div class="item_title">'+task.desc+'</div>'+
 '<div class="item_due">'+task.due+'</div>';
 list.appendChild(newItem);

 var markAsComplete = function(e) {
 e.preventDefault();
 var updatedTask = {
 id: task.id,
 desc: task.desc,
 descUpper: task.desc.toUpperCase(),
 due: task.due,
 complete: e.target.checked
 };
 updateTask(updatedTask);
 }

 var remove = function(e) {
 e.preventDefault();
 if(confirm('Deleting task. Are you sure?', 'Delete')) {

Listing 5.11 app.js—Generating the markup for task items

If a query doesn’t
exist, the search will
return zero results.

The showTask function creates
and displays a task list item
containing a title, due date,
check box, and Delete button.

The markAsComplete event
handler is executed when
the user marks or unmarks
the check box.

The remove event handler
is executed when the user
clicks the Delete button for
a task item.

150 CHAPTER 5 Mobile applications: client storage and offline execution

 deleteTask(task.id);
 }
 }

 document.getElementById('chk_'+task.id).onchange =
 markAsComplete;
 document.getElementById('del_'+task.id).onclick = remove;
 }

5.3.4 Searching an IndexedDB database

Now that the UI for the Task List view is complete, you need to search the IndexedDB

database to extract a list of task objects for display in the Task View list. To do this,

IndexedDB requires the creation of a transaction to define an array of object stores to

scan and the type of transaction to execute. The transaction type defines how the

database will be accessed. IndexedDB provides two options: read-only and read-write.

In the case of implementing a search for the My Tasks application, the transaction would

need to be defined with tasks as the object store to search and a transaction type of

'readonly'. The application could use the read/write option, but the search perfor-

mance would be slower.

 Once the transaction is defined, you then need to extract the index from the

object store. The index will enable the application to filter the object store based on

some property of the object. In your application, the index’s key is based on the task’s

description property. Using this index and a string describing some portion of the task

description, you’ll create a database cursor using the IndexedDB API method open-

Cursor. The application will then use this cursor’s continue method to iterate over

the database and find all of the tasks containing a portion of the task description.

STEP 4: IMPLEMENT A SEARCH ENGINE FOR THE DATABASE AND DISPLAY SEARCH RESULTS

In the application, the loadTasks function is responsible for retrieving and displaying

tasks from the IndexedDB or Web SQL database. loadTasks will either retrieve a fil-

tered set of tasks or all tasks and then pass them to the showTask function, which will

render them onto the Task List view. Add the code from the next listing immediately

after the code from the previous listing.

Using cursors to iterate through database records

Cursor is a generic term describing a control structure in a database that allows you

to iterate through the records stored in it. Cursors typically enable you to filter out

records based on certain characteristics and to define the order in which the result

set is returned. Using the cursor’s continue method, you can then sequentially

move through the record set returned by the cursor, retrieving the data for use in

your applications. Cursors in IndexedDB allow you to traverse a result set that’s

defined by a key range, moving in a direction of either an increasing or decreasing

order of keys.

This code attaches
event handlers to the
task item’s check box
and remove button.

Core API

Core API

151Managing data using IndexedDB

var loadTasks = function(q) {
 var taskList = document.getElementById('task_list'),
 query = q || '';
 taskList.innerHTML = '';

 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readonly'),
 objectStore = tx.objectStore('tasks'), cursor, i = 0;
 if(query.length > 0) {
 var index = objectStore.index('desc'),
 upperQ = query.toUpperCase(),
 keyRange = IDBKeyRange.bound(upperQ, upperQ+'z');
 cursor = index.openCursor(keyRange);
 } else {
 cursor = objectStore.openCursor();
 }

 cursor.onsuccess = function(e) {
 var result = e.target.result;
 if(result == null) return;
 i++;
 showTask(result.value, taskList);
 result['continue']();
 }

 tx.oncomplete = function(e) {
 if(i == 0) { createEmptyItem(query, taskList); }
 }
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql, args = [];
 if(query.length > 0) {
 sql = 'SELECT * FROM tasks WHERE desc LIKE ?';
 args[0] = query+'%';
 } else {
 sql = 'SELECT * FROM tasks';
 }
 var iterateRows = function(tx, results) {
 var i = 0, len = results.rows.length;
 for(;i<len;i++) {
 showTask(results.rows.item(i), taskList);
 }
 if(len === 0) { createEmptyItem(query, taskList); }
 }
 tx.executeSql(sql, args, iterateRows);
 });
 }
}

NOTE You may have noticed that the loadTasks function accepts an optional
argument, q. The application will only pass a query to loadTasks when it
wants to filter the results by what the user has entered in the search box.

Listing 5.12 app.js—Searching the database and displaying the resulting tasks

Build a key
range on the

uppercase
version of

the task
description.

The 'z'
appended to

the second
argument
allows the

application to
search for a

task description
beginning with

the search term
(otherwise, it

would only
return exact

matches).

e.target references the cursor, so
get the result set from the cursor.

Count the number of tasks passed to
showTask. The resulting value will be
used by the transaction event handler,
tx.onComplete, to determine if an
empty task list should be rendered.

Use result['continue']
to find the next
matching task in the
index or next task in
the object store (if
not searching). Using
result.continue,
rather than
result['continue'],
might result in a
conflict with the
JavaScript reserved
word continue.

If IndexedDB
isn’t

supported
and Web

SQL is, build
a query that
will retrieve

the tasks
from the

database.

152 CHAPTER 5 Mobile applications: client storage and offline execution

STEP 5: IMPLEMENT THE SEARCH INTERFACE FOR THE TASK VIEW LIST

To implement the search interface for the application, add the following code imme-

diately after the code from the previous listing.

var searchTasks = function(e) {
 e.preventDefault();
 var query = document.forms.search.query.value;
 if(query.length > 0) {
 loadTasks(query);
 } else {
 loadTasks();
 }
}

document.forms.search.addEventListener('submit', searchTasks, false);

TRY IT OUT

If you reload the application in your browser, you should see a friendly message telling

you that you have no tasks to display, as shown in figure 5.6.

 As you can see from figure 5.6, displaying a list of tasks isn’t very useful if you have

no way of adding tasks to the database. Let’s solve that problem right now.

5.3.5 Adding data to a database using IndexedDB or Web SQL

Adding data to an IndexedDB database requires the creation of a transaction to

define an array of object stores you’ll be using to store the data and the type of

transaction needed, in this case 'readwrite'. Once you have the transaction cre-

ated, you then call its method objectStore, with the name of the object store you

want to add a data item to. The method will respond to this call by returning the

object store. From here, adding the data item to the store is easy. Call the object

Listing 5.13 app.js—Searching for tasks

If a query was typed in, pass
the query as an argument to
the loadTasks function.

When the user submits the search
form, call the searchTasks function.

Figure 5.6 In the left

screenshot, the application

finds no tasks in the database.

Therefore, it displays a

message and links the

question “Add one?” to the

Add Task form. In the right

screenshot, if you try to search

for a task, you’ll see that no

tasks match your query, no

matter what you enter.

Core API

153Managing data using IndexedDB

store’s method add, and pass the new data item to its only argument. The method

will immediately return a request object. If you’d like the application to respond to

the object store’s successful addition of the data item, then define an event handler

for the transaction’s oncomplete event.

 Now, let’s see how this addition procedure can be applied to the application.

STEP 6: ADD NEW TASKS FROM THE ADD TASK VIEW TO THE DATABASE

This code creates a new function called insertTask that manages the process of

inserting the task into the database and updating the display of the Task List view.

InsertTask first constructs a new task object from the Add Task form; second, it adds

the task to the IndexedDB database (or Web SQL if the browser doesn’t support

IndexedDB). Finally, it triggers the callback function, updateView, when the task has

been successfully added to the database. Add the code from the following listing after

the code from the previous listing.

var insertTask = function(e) {
 e.preventDefault();
 var desc = document.forms.add.desc.value,
 dueDate = document.forms.add.due_date.value;
 if(desc.length > 0 && dueDate.length > 0) {
 var task = {
 id: new Date().getTime(),
 desc: desc,
 descUpper: desc.toUpperCase(),
 due: dueDate,
 complete: false
 }

 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore.add(task);
 tx.oncomplete = updateView;
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'INSERT INTO tasks(desc, due, complete) '+
 'VALUES(?, ?, ?)',
 args = [task.desc, task.due, task.complete];
 tx.executeSql(sql, args, updateView);
 });
 }
 } else {
 alert('Please fill out all fields', 'Add task error');
 }
}
function updateView(){
 loadTasks();
 alert('Task added successfully', 'Task added');
 document.forms.add.desc.value = '';
 document.forms.add.due_date.value = '';

Listing 5.14 app.js—Adding new tasks

Construct a task object to
store in the database. The
key is the id property, which
is the current time, and you
also store the uppercase
version of the description
in order to implement
case-insensitive indexing.

Add the task to the
object store using
the IndexedDB
method add.

When a task
has been

successfully
added, call the
event handler

updateView.
The definition

for updateView
appears

immediately
after

insertTask.

For the Web SQL fallback,
use an INSERT statement

to add the task.

updateView loads tasks from the database,
clears input fields in the Add Task form, and
redirects the user to the Task List view.

154 CHAPTER 5 Mobile applications: client storage and offline execution

 location.hash = '#list';
 }
document.forms.add.addEventListener('submit', insertTask, false);

TRY IT OUT

At this point, you should be able to add tasks to the database using the Add Task form.

When the task has been saved, you are taken back to the Task List view, which should

display the task you just created. Feel free to try it now—add some tasks. Also, be sure to

try out the Search form, because this should now be fully functional. The application is

starting to take shape, but you still have a small number of features to add before it’s

complete. Next, you’ll write code to allow users to update and delete existing tasks.

5.3.6 Updating and deleting data from an IndexedDB database

The IndexedDB database has a relatively simple procedure for changing existing data

objects in the object store. First, the application needs to define the database transac-

tion about to occur, and then the application uses the transaction to write a data

object to the specified object store.

 In order to define the database transaction for updating an object store, the appli-

cation would call the IndexedDB method transaction to define the type and scope of

the transaction. Because updating a database requires writing to the object store, the

type is specified as 'readwrite'. The second parameter, the scope of the transaction,

specifies the various object stores the application will be writing to.

 With the transaction defined, the application can now get the object store it needs

to update. Calling the transaction’s method, objectStore, with a parameter specify-

ing the name of the object store will return the object store. At this point, the applica-

tion can update the object store by invoking its put method, with the changed data

object as its parameter.

 Deleting task items follows a similar procedure. But once the application has the

object store, it will invoke the object store’s delete method, with the data object’s key

as a parameter. Delete will use the key to find and delete the data object within the

object store.

 Let’s apply these update and delete operations to the application.

STEP 7: UPDATE AND DELETE TASKS FROM THE TASK LIST VIEW

You’ve already done some of the work required for updating and deleting a task. If

you look at the Task List view in the application, you’ll notice that each task has a

check box and a Delete button. The check box has an updateTask embedded into the

markAsComplete event handler, and the Delete button has a deleteTask embedded

into the remove event handler.

 All that’s left to do is to insert the procedures for updating and deleting the object

store into their respective updateTask and deleteTask function definitions. Because

not all browsers support IndexedDB, you’ll also insert a Web SQL fallback. Add the

code from this listing right beneath the code from the previous listing..

Add the event handler insertTask to
the Add Task form’s submit button.

155Managing data using IndexedDB

var updateTask = function(task) {
 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore.put(task);
 } else if(webSQLSupport) {
 var complete = (task.complete) ? 1 : 0;
 db.transaction(function(tx) {
 var sql = 'UPDATE tasks SET complete = ? WHERE id = ?',
 args = [complete, task.id];
 tx.executeSql(sql, args);
 });
 }
}

var deleteTask = function(id) {
 if(indexedDB) {
 var tx = db.transaction(['tasks'], 'readwrite');
 var objectStore = tx.objectStore('tasks');
 var request = objectStore['delete'](id);
 tx.oncomplete = loadTasks;
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'DELETE FROM tasks WHERE id = ?',
 args = [id];
 tx.executeSql(sql, args, loadTasks);
 });
 }
}

TRY IT OUT

You should now be able to mark the completed check box and delete items in the

Task List view. But one final function remains to complete the application: the drop-

Database function. This will delete the entire tasks database (or truncate the tasks

table if using the Web SQL fallback).

5.3.7 Dropping a database using IndexedDB

Dropping a database in IndexedDB is easy and involves just one method: the delete-

Database method of the IndexedDB object. Call deleteDatabase while passing the

name of the target object store, and then the entire database will be removed.

STEP 8: DROP THE DATABASE TO CLEAR ALL TASKS

To enable a user to clear all tasks from the application, you need to do two things:

1 Create a new function, dropDatabase, that will remove the tasks database, and

therefore all task items, from the application.

2 Call dropDatabase from the resetSettings function you created earlier in the

localStorage section of this chapter. Adding this call now completes reset-

Settings’s function, which is to reset a user’s personal settings and erase all of a

user’s tasks.

Listing 5.15 app.js—Updating and deleting tasks

Use the put method, passing the
task object as an argument, to
update the task in the database.
The task object must have the
correct key value, or the
database may create a new
object in the store rather than
update the existing one.

Use the delete method
to remove a task. Some
browsers will choke if
you use dot-notation
here, because delete is
a reserved word in
JavaScript. So to be safe,
use the square bracket
notation.

When the delete operation
has successfully completed,
load the Task List view to
show the updated items.

Core API

156 CHAPTER 5 Mobile applications: client storage and offline execution

For browsers that don’t support IndexedDB, you’ll need to provide a Web SQL fallback

as well. In this case, you won’t drop the database; you’ll just delete the tasks table from

the Web SQL database.

 To define the dropDatabase function, add the code from the next listing directly

below the code from the previous listing in your app.js file.

var dropDatabase = function() {
 if(indexedDB) {
 var delDBRequest = indexedDB.deleteDatabase('tasks');
 delDBRequest.onsuccess = window.location.reload();
 } else if(webSQLSupport) {
 db.transaction(function(tx) {
 var sql = 'DELETE FROM tasks';
 tx.executeSql(sql, [], loadTasks);
 });
 }
}

With the dropDatabase function defined, you can now call it from the resetSettings

function you created in section 5.2.3. In this function, locate the line location.hash =

'#list'; and add the following line just beneath it:

dropDatabase();

TRY IT OUT

That’s it! The sample application should now be fully functional. Try it out on a device

or browser that supports IndexedDB or Web SQL. (iOS, Android, BlackBerry Torch,

Opera Mobile, Chrome, Firefox, Safari, and Opera all work.) If both IndexedDB and

Web SQL are available in the browser, the application will favor the former. In the next

and final section of this chapter, you’ll learn how to ensure an application will work

offline using an application cache manifest file. You should then have an application

that stores all of its data on the client and is usable both online and offline.

5.4 Creating a web application that works offline:
using the application cache manifest

Until recently, web applications have been used primarily in connected environments,

on desktop or laptop computers, where the majority of the time an internet connec-

tion is available. But as rich web applications become more prominent as realistic

alternatives to their desktop counterparts, and as mobile applications continue to

gather momentum, the need grows for web applications to work in scenarios where

connectivity is not available.

Listing 5.16 app.js—Dropping the database

Application cache manifest 4.0 3.5 10.0 10.6 4.0

Use the
deleteDatabase

method to
drop the tasks

database.

Reload the page to
initiate a load event.
This will trigger the
load event handler to
create a fresh copy of
the database.

In your Web SQL fallback, clear
down the tasks table rather than
drop the entire database.

157Creating a web application that works offline: using the application cache manifest

To address these demands, HTML5 provides a file called the application cache mani-

fest. This file, in its most basic form, specifies a list of web resources needed by a web

application. Browsers that support the manifest feature will use the list to provide a

web application with access to a local cache of these web resources. As a result, the

web application can run offline.

 For resources only available from the network, the cache manifest can specify fall-

back client-side URIs for offline activity. For instance, if an application relies on a

JavaScript file to save data to a server, then the cache manifest would specify a client-

side URI pointing to a JavaScript file that uses local requests for client-side storage.

NOTE If you’ve been working through this chapter’s example without a web
server, it’s worth pointing out that you won’t be able to use the application
cache manifest unless your application resides on an actual web server (rather
than just sitting in a local directory). You’ll also need to do a small bit of config-
uration to get cache manifests to work, which we’ll cover later in the section.

The cache manifest can also specify URIs that must be fetched from the network. They

will never be downloaded from the application cache, even if the application is offline.

Now that you have a basic understanding of the application cache manifest, let’s

implement offline functionality for My Tasks. This process will be broken down into

three steps:

■ Step 1: Configure the web server to serve application cache manifest files for

My Tasks.

■ Step 2: Create an application cache manifest file for My Tasks.

■ Step 3: Detect changes in the My Tasks application cache manifest file.

5.4.1 Configuring a web server for an application cache manifest’s

MIME type

In order for a manifest file to be correctly loaded, your web server needs to serve a

manifest file using the correct MIME type. The manifest MIME type is not typically set

by default in a web server’s configuration, so you’ll need to add the MIME type, text/

cache-manifest, to your web server’s configuration.

STEP 1: CONFIGURE THE WEB SERVER TO SERVE APPLICATION MANIFEST FILES FOR MY TASKS

If you’re using the Apache web server, you can typically add MIME types by either mod-

ifying the httpd.conf configuration file or by serving an .htaccess file in the root of your

In this section, you’ll learn

■ How to configure a web server for an application cache manifest MIME type

■ How to create a cache manifest file

■ How to detect changes in the manifest file

158 CHAPTER 5 Mobile applications: client storage and offline execution

web application. If you’re using Python’s built-in web server, then create an .htaccess

file in the root directory of your web application, and then add the MIME type to the

.htaccess file. In either case, to serve the correct MIME type for files with the exten-

sion .appcache, you need to add the following line to the end of the configuration

or .htaccess file:

addType text/cache-manifest .appcache

NOTE A cache manifest file can have any file extension, but the file must be
served with the MIME type text/cache-manifest.

If you’re using the nginx web server, you add MIME types by adding an entry to the

mime.types file in the nginx conf directory. This file typically has the following format:

types {
 text/html html htm shtml;
 text/css css;
 text/xml xml;
 ...
}

To enable the cache manifest MIME type, add an entry to this file as follows:

 text/cache-manifest appcache;

After editing the configuration file, restart your web server, and your cache manifest

file should be served correctly from now on. If you’re using another web server,

please consult your web server’s documentation for further information on how to

add MIME types.

 With the web server configured correctly, you’re now ready to create a cache man-

ifest file, which we’ll cover next.

5.4.2 Creating a cache manifest file

The manifest file is a basic text file that contains a title header, CACHE MANIFEST, and

up to three subsections with the headings CACHE, NETWORK, and FALLBACK. For explan-

atory purposes only, here’s a sample cache manifest file:

CACHE MANIFEST
Rev 3

CACHE:
index.html
pics/logo.png
stylesheet.css

FALLBACK:
*.html /offline.html

NETWORK:
http://api.stockwebsite.com

The CACHE section represents the default section for entries. URIs listed under this

header will be cached after they’re downloaded for the first time.

159Creating a web application that works offline: using the application cache manifest

NOTE You can also forgo specifying a CACHE header and simply place the URIs
to be cached immediately under the title header, CACHE MANIFEST.

The FALLBACK section is optional and specifies one or more pairs of URIs to use when

a resource is offline. The first URI in a pair is the online resource; the second is the

local fallback resource. Wildcards can be used.

NOTE Both URIs must have a relative path name. Also, the URIs here, as well
as in other sections of the cache manifest, must have the same scheme, host,
and port as the manifest.

The NETWORK section serves as the application’s whitelist for online access. All URIs

listed under this header must bypass the cache and access an online source. Wildcards

can be used.

 You can also specify comments in the application cache manifest. They consist

of any number of tabs or spaces followed by a single # and then followed by a string

of characters. Comments must exist on a line separate from other section headers

and URIs.

 Now, equipped with knowledge of the basic structure and syntax of an application

cache manifest, let’s put that knowledge to work by creating one for My Tasks.

STEP 2: CREATE THE APPLICATION CACHE MANIFEST FILE FOR MY TASKS

Your cache manifest will have a CACHE section and a NETWORK section. The CACHE sec-

tion will list the index.html, style.css, and app.js files as cacheable resources. The

NETWORK section will contain only an asterisk, the wildcard character. Create a new file

named tasks.appcache in the root directory of your web application, then add the

contents of the following listing to tasks.appcache.

NOTE After entering this code listing, don’t try to run the application. It will
work, but you’ll have to do extra work in the final section of this chapter,
“Automating application updates,” to get it working correctly.

CACHE MANIFEST
Rev 1
CACHE:
index.html
style.css
app.js

NETWORK:
*

In order for your application to read this file, you need to modify your HTML docu-

ment with the manifest’s filename. Open index.html and replace the current opening

<html> element definition with the following:

<html lang="en" class="blue" manifest="tasks.appcache">

Listing 5.17 tasks.appcache—Defining resources that are available offline

This
denotes

the start
of the
cache

manifest
file.

Use a comment in your manifest to define the current revision number of the
web application. This allows you to easily monitor and log application
revisions, even if no changes are being made to the manifest file itself. Later,
we’ll show how to use these revision numbers to trigger application updates.

The wildcard under NETWORK specifies that the online whitelist is open; any other
URIs not listed under CACHE MANIFEST, CACHE must be retrieved from the network.

160 CHAPTER 5 Mobile applications: client storage and offline execution

We’re almost there. In the final step, you will give My Tasks the ability to detect

changes in the manifest file. My Tasks will use this ability to determine when to down-

load a newer version of My Tasks.

5.4.3 Automating application updates

When you created the cache manifest file, you used a comment with a revision num-

ber to update the manifest, to document changes in the manifest or in one or more of

the web resources listed in the manifest. This practice has a function beyond docu-

mentation; it can also be used to detect and trigger application updates.

 If any change is made to the text in the manifest, the application will download the

new manifest and all files listed in the CACHE MANIFEST or CACHE section. When this is

done, a new cache is created and an updateready event is fired. To update the appli-

cation, you have to attach an event handler to updateready. The handler will swap

the old cache for the new one, then ask the user for permission to update the applica-

tion. If the user grants permission, the event handler will force an application reload.

The reload ensures that resources from the new cache are loaded into the applica-

tion. If the user declines the update, the application will use the new cache the next

time the user loads the application.

 Now, let’s add this update feature to My Tasks.

STEP 3: DETECT CHANGES IN THE MY TASKS APPLICATION CACHE MANIFEST FILE

As mentioned before, you’ll use the updateready event to detect changes in the

application manifest. So, all you need to do is define and attach an event handler to

the application cache’s updateready event. The event handler will call the applica-

tion cache’s swapCache method and ask the user for permission to reload the appli-

cation using the new version of the cache. If the user confirms, the event handler will

call window.location.reload to reload the application using the new cache version.

 Add the code from the following listing to app.js, just after the dropDatabase func-

tion you created in listing 5.16.

if('applicationCache' in window) {
 var appCache = window.applicationCache;
 appCache.addEventListener('updateready', function() {
 appCache.swapCache();
 if(confirm('App update is available. Update now?')) {
 window.location.reload();
 }
 }, false);
}

Listing 5.18 app.js—Automatic update detection and loading

Core API

Detect if the user’s browser
supports the Application Cache API.

When updateready fires, the browser will have already redownloaded the
resources listed in the manifest and created a new cache. The event handler for

updateready will call swapCache to replace the old cache with the new cache.

Ask the user if they want to update the application now. If they
click Yes, the page will reload using the new cache; otherwise,

the new cache will be used the next time they load the page.

161Creating a web application that works offline: using the application cache manifest

TRY IT OUT

That’s all there is to it! If you’ve followed these steps correctly, you should now be able

to use your application offline. If you put this application on a server with a registered

domain name, you could test this application on your mobile device’s browser. Just

visit the site in order to load the application for the first time. Now, turn on Airplane

Mode on your device, which should kill all network connectivity. Refresh the page in

your device’s web browser, and you should still be able to use the application in full.

The result can be seen in the screenshots in figure 5.7.

 If you are trying to run this app on your desktop browser with the Python web server,

start the My Tasks app by entering localhost:8000 into your browser’s address box. (If

you configured the web server with a different port number, use that number instead.)

 To simulate an offline condition for the My Tasks app running in your desktop

browser, kill the Python web server process, then refresh the page in your web browser.

You should still be able to use the application in full.

NOTE If you tried to run this application with the cache manifest before enter-
ing the code from this final listing, then you must first flush your browser’s
cache before loading the application from the server.

To test the application’s ability to load a newer version, update the revision number in

the tasks.appcache file and save it. Next, reload the application. You should see the

Figure 5.7 My Tasks application running offline. You’ll notice the airplane icon in the top left

indicating that the phone has no network access. You may also notice that the jazzy font we used in

the heading is no longer showing; this font was loaded from the Google Font API, which isn’t available

when you’re offline.

162 CHAPTER 5 Mobile applications: client storage and offline execution

confirmation dialog asking you if you want to update. This is illustrated in the Android

device screenshot in figure 5.8.

5.5 Summary

As you’ve learned in this chapter, HTML5 makes it possible to create offline database

applications using client-side code. This allows you to build faster, more responsive

applications that store data on the device itself and work regardless of the browser’s state

of internet connectivity. These abilities expand the range of web applications and make

the web a more viable platform for cross-platform mobile application development.

 In the next chapter, you’ll learn about the 2D canvas API in HTML5 and how it

allows you to build animations and games using native JavaScript APIs. The chapter

will introduce you to Canvas’s support for drawing graphic elements using gradients,

paths, and arcs. You’ll also learn how to use the API to create smooth, high-frame-rate

animations. In addition, the chapter will show the API in action while building an

entire game.

Figure 5.8 When the

manifest file has been updated

and a new application cache

has been created, the

updateready event is fired.

The application attaches a

handler to this event that

swaps the old cache for the

new cache, then asks the user

if they want to update the

application (this simply

reloads the page, which loads

the latest application version

from the new cache).

